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Biochemical models capable of sustained oscillations and deterministic chaos are investigated.
Chaos is characterized by exponential separation of near-by trajectories in the long-term average.
However, we observed rather large deviations from purely exponential separation termed “non-
uniformity”. A quantitative description and consequences of nonuniformity are discussed.

Furthermore, the influence of short-correlated noise is treated using next-amplitude maps and
Lyapunov exponents. Drastic amplification of fluctuations in non-chaotic systems and relative

robustness of chaos were found.

1. Introduction

As a result of enzyme regulation in biochemical
systems, a variety of dynamical patterns were found
to occur [1—4]. Such a temporal selforganization is
part of the biological regulation and might also
prove responsible for failures in biological systems
[5, 6].

In the following, Selkov-type systems are treated
which may serve as qualitative models of metabolic
pathways [7—10]. In these models sustained oscilla-
tions, coexistence of different attractors (e.g. bi-
rhythmicity in the sense of [3]), period-doubling,
and deterministic chaos [9, 10] were found. In this
paper we use specific models to discuss two prob-
lems which are of general interest: nonuniform
dynamics and the effects of noise.

In Sect. 2 we introduce the models of consider-
ation and apply usual techniques (phase portraits,
next-amplitude maps, Lyapunov exponents). Chaotic
behaviour is characterized by a positive Lyapunov
exponent indicating that small perturbations grow
exponentially in the long-term average. However, as
we will show in Sect. 3 large deviations from this
average growth occur, referred to as nonuniformity.
Quantities are defined which measure the degree of
this nonuniformity on different time scales.

It is widely recognized that biochemical systems
are inherently noisy since they are open to their
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surroundings [11—14]. Thus it seems useful to study
the effects of random fluctuations. In Sect. 4
mechanisms are discussed which may cause a
drastic amplification of otherwise imperceptible
fluctuations. The influence of noise on chaos is
studied by the aid of next-amplitude maps and
Lyapunov exponents in Section 5. Robustness of
chaos and transitions from periodic to appearently
chaotic behaviour are found.

2. The Models

Our first system is a generalization of the well-
known Selkov-oscillator describing glycolytic oscilla-
tions [7, 8]:

dx/dt=1-=Bx—xy% dy/di=Axy*-y). (1)

Here nonlinearity is due to an autocatalytic reaction
of substrate x into product y. A detailed bifurcation
diagram can be found elsewhere [8]. The main
features of the dynamics are visualized in Fig. 1,
where a stable limit cycle, a stable steady state on
the x-axis and a separatrix between them can be
seen. Despite the simplicity of (1) a Hopf-bifurca-
tion and coexistence of attractors appear and, there-
fore, remarkable responses to fluctuations can be
observed (see Section 4).

Deterministic chaos was found in an extended
model containing in addition to (1) a reversible
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deposition of x into a inactive form z [9]:
dx/dt=1-Bx—xy’—Exy+z,

dy/dt=A(xy*—y+ D), dz/dt=F(Exy—2z). (2)

A bifurcation diagram and some routes to chaos are
discussed in [9]. In the following only E will be
varied and the other parameters are kept constant
(A=4,B=0.35D=0.1; F=0.2).

In 1978 the nonperiodic long-term behaviour of
solutions of (2) was taken as an indicator of chaos
[9]. Today, Lyapunov exponents describing the
stability properties of trajectories are widely used as
quantitative measurements of chaos [15, 16]. They
describe the averaged stability properties of a
trajectory on an attractor. For computation of
Lyapunov exponents the linearized equations have
to be solved:

dg/dt=J(x) q €]

(J (x) = Jacobimatrix, x = (x, y, 2)).

These equations govern the behaviour of infini-
tesimal deviations ¢(¢) from a trajectory x(z). The
growth of the Euclidean norm of ¢ leads for almost
all initial vectors ¢(0) to the maximum Lyapunov
exponent 4, [15]:

i x\q(z)u}
‘rm g0 ] )

The sum of all Lyapunov exponents related to the
contraction of phase space volume is given by the
mean divergence:

/“.1 = lim
1=

;,|+/:.2+;.3 (5)
1 t

=lim— [ (-B—y*—Ey+2A4xy—A—F)dr.
t-a [

Since one Lyapunov exponent vanishes [15], we can
compute the whole Lyapunov spectrum from
(2)—(5). In this way the following estimations were
obtained for a representative parameter value
E = 1.5 (integration time: 50000):

41 =10.0285 £ 0.0005,
;.2 = 0,
A3=—10.248 = 0.001. 6)

Figure 2 shows how the maximum Lyapunov expo-
nent 4, depends on parameter E. So-called periodic
windows (4, =0) are interspersed among chaotic
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Fig. 1. Representative stroboscopic phase protrait to (1)
with a stable node (®), unstable stationary points (x) and a
stable limit cycle. Every 0.1 time units a point was plotted
and thus fast and slow “motion” can be distinguished.
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Fig. 2. Maximum Lyapunov exponent 4; near the onset of
chaos (step width 4E =0.001, integration times: 6000).
Neighboring points have been joined by a straight line to
guide the eye. The envelope (see (7)) is depicted as a
dashed line.

parameters (4; > 0). The onset of chaos around
E.=1.5245 is characterized by the “period-doubling
scenario” [9]. Therefore, one may expect a universal
envelope of 4, (E) [17]:

J(E)~ |E—E.|?, (B=0.4498...). )

Such a power law indeed was found in our system
(dashed line in Fig. 2) with an exponent f= 0.42
* 0.04. Thus, once more an astonishing universality
near the onset of chaos is indicated.

Now we describe the solutions of (2) in the phase
space spanned by the concentration variables. After
a transient time trajectories are captured by the
attractor. Periodic motion corresponds to an attract-
ing limit cycle (see e.g. Fig. 1) whereas chaotic
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Fig. 3. Next-amplitude maps of chaos in (2) (E=1.5).
(a) Maximum of y(z) versus the preceding one. (b) Maxi-
mum of y(#) versus the maximum two oscillations before.

motion takes place on ‘“‘strange attractors” which
can be characterized by non-integer dimensions [18].

The Kaplan-Yorke dimension [19] follows from
the Lyapunov exponents in (6):

DKY=2+%=2.115iO.OO3. (8)
|

Since this value is slightly above two, the attractor
is somewhat similar to a two-dimensional surface
and, therefore, Poincaré sections or next-amplitude
maps resemble one-dimensional curves. The next-
amplitude maps in Fig.3 are obtained from
sequences of maximum y-values which are stored
during the integration of (2). Since Fig. 3a reveals a
two-band structure, it appears desirable to use every
second maximum only. Thus the curve in Fig. 3b is
derived. The similarity with the logistic map is not
surprising because period-doubling was observed at
adjacent parameters [9].

So far we have obtained some insight into the
chaotic properties by using standard techniques
(Lyapunov exponents, next-amplitude maps).

In the next section it will be demonstrated that
the exponential separation of near-by trajectories
must be understood as average behaviour. Devi-
ations from the exponential growth turn out to be
rather important, at least in chemical systems.

3. Nonuniform Dynamics

In order to produce temporal self-organization in
chemical systems, several reactions are necessary.
The reaction rates can vary widely and, therefore,
the dynamics of chemical systems is usually very
nonuniform. This means that the phase space
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Fig. 4. (a) Chaotic oscillations of the concentration y ()
(Egs. (2); E=1.5). (b) Corresponding growth of a pertur-
bation ¢q using (3) (| ¢(0)| = 1). Note the deviations from
the average behaviour (dashed line).

velocities and the stability properties of trajectories
fluctuate strongly.

It was shown in the preceding section that the
norm of an infinitesimal perturbation grows ex-
ponentially in the long-term average (see (4)).
However, the realization in Fig. 4 visualizes drastic
deviations from average behaviour (dashed line).
To quantify this nonuniformity, we return to (2)—(3)
and discuss the growth of the Euclidean norm

¢ (1) insome more detail:
_Zij(x) UL
—lql="t<=——q| =L lq]. 9
dr q Zq% 1 q (xvq)‘qu ()

Thus a time dependent divergence rate L(x, q) is
derived which depends on the trajectory x and the
direction of ¢. With increasing time transients die
out and almost all perturbations ¢ are oriented into
the direction of maximum expansion [15] and,
therefore, the statistical properties of L (x,q) are
assumed to be independent of the initial conditions.
Equation (4) implies that the long-term average of
L(x,q) equals 4;. Now we define the following
growth rates:
i+t [
li(t)= | L(x,q)dt=1In leti+9]

,i 1q@) |
The quantities /;(r) measure the exponential change
of the length of g (¢) during the time interval r when
the system is moving along the trajectory from x(¢;)

(10)
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to x(z;+1). Thus, the deviation from average
behaviour can be measured on arbitrary time scales
by the ratio of the standard deviation 4/(7) to the
mean value {/(7)) (averaging over ensembles /;(7)
corresponds to time averages).

Al =(P@y=A@H"? (@y=ht. (1D

For small or large time scales t, previously defined
quantities can be recovered: the “Non-Uniformity
Factor” (NUF) [20, 21] and a “diffusion constant” D
[18, 22].

NUF = 4, -lim 2
S @)y
2
DEL'lim—@—[(L))-—. (12)

2 s T

Table I contains information about the nonuni-
formity in our model on different time scales.

It can be concluded that only on large time scales
(t> 100) the growth of perturbations ¢ is actually
governed by the maximum Lyapunov exponent. On
time scales of only few oscillations (mean “period”
(T)=9.6), expansion as well as contraction of
perturbations can be found. These statements are in
good accordance with the actual growth of the
realization in Fig. 4. The concept of nonuniformity
on arbitrary time scales was applied to one-dimen-
sional maps in [23]. There it turns out again that a
chemical system (Belousov-Zhabotinsky map) is
characterized by strong nonuniformity. Our assump-
tion of nonuniformity being a typical property of
chemical chaos will be studied in more detail in a
forthcoming paper.

Nonuniform dynamics is intimately related to the
computational effort which is necessary to estimate
Lyapunov exponents. Beyond this, the important
question of state predictability depends on the
degree of nonuniformity [24].

Table 1. Measures of nonuniformity (see (11)) on different
time scales (E = 1.5, integration time: 104).

A4l(7)
T A4l(7) —
[du)
0.1 0.128 = 0.002 46 *2
0.2 0.247 £ 0.002 4 =+2
1 0.88 £ 0.002 3l x£2
10 1.96 +0.1 7 =*05
100 214 £0.5 0.75+0.2

From [18] it follows that nonuniform dynamics is
closely connected with a complicated structure of
attractors. Such an inhomogeneity of attractors can
be treated by the concept of generalized attractor
dimensions. Particularly, the differences between
probabilistic dimensions measure the degree of in-
homogeneity [18]. It was shown in [25] that our
attractor (E = 1.5) is indeed a very “inhomogenous
fractal” since the correlation exponent [18] D, = 2.02
+ 0.06 differs considerably from the Kaplan-Yorke
dimension (see (8)).

Thus we emphasize that chemical systems typically
exhibit nonuniformity and inhomogeneous attrac-
tors and, therefore, a proper description should
include a treatment of these properties.

4. Amplification of Noise in Non-Chaotic Systems

Real macroscopic systems are always in contact
with sources of fluctuations. Besides thermal noise,
a fluctuating input, the discrete number of reacting
particles and “hidden” reactions are possible sources
of random perturbations.

Here the wide class of additive short-correlated
noise is simulated by adding every 0.1 time units
uncorrelated Gaussian pseudo-random numbers
(standard deviation Q) to the solutions of (1) or (2).
In this way, realizations (Figs. 5 and 6) and next-
amplitude maps (Figs.9 and 10) were obtained.
Furthermore, the maximum Lyapunov exponent 4,
is computed in the presence of fluctuations. For this
purpose in (3) the deterministic trajectory x was
replaced by the perturbed orbit [26]. By this proce-
dure Z; is defined via linearization along noisy
trajectories, and thus it describes the separation of
near-by orbits subject to the same external noise

a.st
Fig. 5. Noise-induced oscillations near the Hopf bifurca-
tion (Egs. (1); 4=0.95; B=0). The fluctuations act on
x (1) with Q = 0.02.
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field. If near-by trajectories are influenced by differ-
ent realization of random noise the situation is
much more complicated. Then we can expect in
addition to an exponential separation described by
/1> 0 a power-law separation due to noise which is
well-known from diffusion [27].

First of all some effects of noise on two-dimen-
sional systems are discussed. Under certain circum-
stances drastic amplification of fluctuations appears
which can easily be confused with truly chaotic
behaviour. Thus, our examples contain some warn-
ing in the present chaos euphoria to identify any
large nonperiodic oscillations as deterministic chaos.

As a first example the Selkov-oscillator of (1) is
treated at the parameters given in Figure 5. These
values correspond to a weakly damped focus
(x,y) = (1, 1), i.e. deterministic trajectories approach
this steady state with damped oscillations. The
realization in Fig. 5 shows relatively regular noise-
induced oscillations with amplitudes drastically
exceeding the noise level (Q = 0.02).

Now we focus our attention to another kind of
irregular oscillations due to fluctuations as demon-
strated in Figure 6. At these parameter-values each
deterministic trajectory approaches the stable node
(x,y)=(1/B,0) (see Figurel). On the contrary,
stochastic realizations may cross the separatrix
located slightly above the x-axis and return to the
node after a high burst [28]. In both cases, the
stochastic origin of the oscillations can be detected
by negative Lyapunov exponents:

Fig. 5:
Fig. 6:

Jy=—0.035 % 0.002,

/=—0.15 £0.02. (13)
However, we found another system with noise-
induced instability, i.e. with 4, >0 due to fluc-
tuations:

‘3;2 0.2- %t—— 10x +100x3 = n(t). (1)
This double-well oscillator was studied intensively
under periodic excitation [29]. Influenced by a
random force () (every 0.05 time units Gaussian
random numbers with variance 0.005 were added)
similar oscillations as in the chaotic case [29] occur
(see Figure 7a). This noise amplifier can be inter-
preted as a combination of the previously discussed
cases, since it contains weakly damped focuses and

H. Herzel et al.

- Nonuniform Chaotic Dynamics and Effects of Noise

%} 20 40 60 8@

Fig. 6. Burst oscillations due to crossing of a separatrix
(Eqs (1) A=1.0, B=0.125). Noise acts on x (), y(f) with
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Fig. 7. (a) Noise-induced oscillation of the double-well
oscillator (Eq. (14)). (b) Corresponding growth of a per-
turbation g using (3). Note the exponential growth in the
average (dashed line) and the sudden increase of | ¢| due
to noise-induced jumps to the other focus.

a separatrix. The unexpected result

=0.3+0.04 (15)

can be understood from Figure 7b. As in Fig. 4,
the behaviour of a perturbation ¢ is shown, and in
this way the origin of the instability can be detected.
Noise may kick the system from positive to nega-
tive x-values (and vice versa) and thus the strong
instability around x = 0 is responsible for the overall
instability expressed by (15).

The chosen examples illustrate that fluctuations
can be amplified to macroscopic proportions and
thus easily be mistaken for deterministic chaos.
However, powerful new methods of time series
analysis are developed which allow chaos to be
distinguished from stochastic oscillations [16, 30].



H. Herzel ez al. - Nonuniform Chaotic Dynamics and Effects of Noise 141

Besides our examples, further references [2, 31, 32]
suggest that the amplification of noise due to local
instability, marginal stability near bifurcations and
coexistence of attractors might be of similar impor-
tance as chaos itself.

5. The Influence of Noise Chaotic on Dynamics

In order to cross the interface between mathemat-
ical models [1-3, 9] and experimental evidence of
chaos [33, 34], it is appropriate to incorporate the
effects of fluctuations [17, 35]. Therefore, we con-
sider (2) with nonvanishing noise, i.e. we add
random perturbations to the solutions x (¢) and y ()
(standard deviation Q). In the presence of noise the
same properties and techniques as in Sect. 2 are
chosen: the instability of orbits, measured by
Lyapunov exponents, and the structure of attractors,
displayed by next-amplitude maps.

The full line in Fig.8 shows the maximum
Lyapunov exponent 4, versus the parameter E in
the absence of noise, whereas the dashed line
visualizes the smoothing effect of noise. Particular-
ly, it turns out that the thresholds of chaos are
shifted and that windows disappear.

One may expect that chaos responds very sensi-
tively to fluctuations as trajectories are unstable, but
averaged properties such as the Lyapunov exponent
/1 are relatively robust. Moreover, the parameter
region of positive 4, is enlarged by noise.

In the following we want to study the effects of
fluctuations with the aid of next-amplitude maps. A
comparison of Fig. 3a with Fig. 9 reveals that the
two bands merge due to noise, whereas the general
structure is preserved.

Now the “window” at E = 1.5095 (compare Fig.2)
is considered. Figure 10 shows that the 6-period
cycle is destroyed by the noise and that the be-
haviour reminds to chaos at adjacent parameters
(see Figure 3). An explanation of the seemingly
chaotic behaviour in Fig. 10 is connected with
chaotic transient [36]: Deterministically after some
transient time on a chaotic repeller the trajectories
ultimately fall onto the periodic attractor. Since
these transients are more robust against fluctuations,
the noisy trajectories resemble nearby (in parameter
space) chaotic orbits. Summarizing, we conclude
that in agreement with other studies [13, 17, 35]
essential properties of chaos persist in the presence

A
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0.00 |

Fig. 8. Maximum Lyapunov exponent versus the param-
eter E. Neighboring points have been joined by lines to
guide the eye. Integration times: 6000; full line: deter-
ministic case (Q = 0); 4E = 0.005; dashed line: noisy case
(Q =0.0005); 4E = 0.02.
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Fig. 9. Next-amplitude map as in Fig. 3a but nonvanishing
noise (Q = 0.0002).

Y Y
PRAAL 0.0 ¢ i+2
; (a) (b)
£
\’7 -8.5 fﬂ"“«
A Y
% é %
1 . x Y
g X
e
) . . Yi -15 . R
e 1 2 -1.5 -1.8 -8.5 0.8

Fig. 10. Next-amplitude maps at E = 1.5095 (determin-
istically a window) in the presence of fluctuations
(Q =0.0004). The deterministic cycle is visualized by
crosses. (a) Maximum of y(r) versus the preceding one;
(b) maximum of y(r) versus the maximum two oscillations
before.
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of noise. Thus chaos is observable in experiments
and numerical errors have no dramatic consequences.

6. Concluding Remarks

Deterministic chaos appears in rather simple
biochemical models. However, the corresponding
parameter regions in autonomous systems seem to
be small [3, 9]. On the contrary, it was quite easy to
find chaos via periodic modulation of the param-
eters in (1) [10].

Chaos appearing in (2) was measured by
Lyapunov exponents and the Kaplan-Yorke dimen-
sion. It turns out, however, that these averaged
quantities only partially describe what actually is
going on, since nonuniform dynamics and inhomo-
geneous attractors are characteristic properties of
chemical chaos. The exponential instability is,
therefore, essential on large time scales only.

It is worth mentioning that the concept of non-
uniformity seems to be related to the problem of
weather forecast. Lorenz investigated the error
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